Project

WindBot

Mikhail Bruk \

Momchil Dimchev
Anton Talalayev

Mechatronics
MES5643

Introduction:

Wind turbines are designed to exploit wind energy at specific locations. Wind energy is plentiful,
renewable, widely distributed and helps reduce greenhouse gas emissions. Turbine placement is usually
preselected using a wind atlas and then validated using wind measurements on the field. In most cases,
meteorological wind data alone is not sufficient for accurate placing of a large wind power project.
Collection of terrain-specific data for wind speed and direction is crucial to determining a site’s
potential. There is no way to account for all the variables affecting the wind in the nature, so only
experimentally collected data will be accurate enough. It is impractical to apply manpower to the long
and repeating task of measuring wind values across a large area, so an automated approach should be
developed. A WindBot will split the terrain into a grid of coordinate points and will measure data at each

point, recording key points with highest wind speed.

Theory:

Our team has designed and implemented an alternative method to retrieving on-site data for
wind speed measurements. The primary objective of the Basic Stamp 2 controlled autonomous robot is
to travel around the field and read the wind speeds at various locations. In order to do that, the minimal
design for the robot involved a propeller fitted with an encoder to record rotational speed. The top
three wind speed measurements and their locations would be stored for later access. The
measurements would be displayed on an LCD for a human operator to monitor. After surveying the site
and tracking its own movements by the use of an accelerometer for better accuracy, the robot would
return to the initial position. The human operator can then select any of the stored locations and direct
the robot to go back for further testing. To keep track of the locations, robot would divide the area in

grids, assign coordinates to them and measure the wind speed for each grid. Depending on dimensions,

more data points can be acquired at a cost of increased time. The optimal design for this robot would
also involve: a manual mode in which the user would be able to control the robot with an IR remote
control, wind direction measurement, obstacle avoidance system and emergency safety shutdown

button.

In the final design, the priority was given to the wind direction over other optimal design
features. Final implementation included wind speed measurement, wind direction measurement,
compass nhavigation, distance measurement, course correction, and ROM data storage. Obstacle
avoidance and return to point of highest wind speed were not implemented. The discrepancy between

initial and final design will be discussed in Analysis section of the report.

Mathematical Background:

Certain BASIC STAMP limitations required the programmer to come up with alternative ways to
carry on certain calculations. Basic stamp operates with integers only, and any division or factor

multiplication has to be carefully analyzed.

In order to multiply a number by a decimal fraction, a ** operator has to be used, such that
PBASIC operates with whole numbers, and then scales down the result to match the required answer. In
order to get the decimal point to work correctly, a remainder has to be used to get all the data. The

following line of cod is an excerpt from the programming part of the project:

Debug DEC rpm_1 ** 145, "." DEC ((rpm_1// 455) * 100) ** 145 ,CR

First, the variable is multiplied by the conversion factor to get the whole part of the number, then the
decimal point is displayed, and after that the part of the number after the decimal point is calculated

using the remainder.

When dealing with angles, it is important to know the relative position of one direction with
respect to another. If angle one is bigger than angle two, angle one is to the right. It is a simple
comparison, unless you have a singularity point between two directions. Singularity point occurs
between 360 and 0 degrees. In order to check for this case, an angle had to be compared to its opposite,
360 — angle. If the opposite is smaller, you are dealing with this specific case and have to compute the
position accordingly. Here, the relationship between two angles is flipped: if angle one is bigger than

angle two, angle one is to the left.

Mechanical Designs:

Initial design of the project began with research of modern day anemometers and their

advantages and disadvantages.

The first considered design was a windmill based mechanical anemometer. This type implies
that the axis of rotation is vertical and the velocity measuring axis is horizontal. This design included a
propeller combined with a vane on the horizontal axis, attached to the freely rotating vertical axis. The

benefit of this kind of anemometers is that they show both, speed and direction of the wind.

Figure 1 Windmill Based Anemometer

The next design that was considered was a cup anemometer. It consisted of three or more
hemispherical cups attached on horizontal arms that are in turn attached to a vertical shaft at equal
angles to each other. The advantage to such a design is that it is very simple and easy to construct. It
also gives a very small error (less that 3% up to 60mph) in the wind speed measurements. A major

disadvantage, though, is that it does not give a wind direction.

Figure 2 Cup Anemometer

After evaluating both ideas, and the possible complications of each mechanical design, it was
decided that the windmill based anemometer was the more useful devise for the specified objective. It

would result in a more complicated design with a benefit of measuring wind direction.

A single propeller, two vane design was chosen. Parallel vanes made of balsa wood were spaced
at the distance equal to the propeller diameter. This ensured undisturbed airflow to position the
propeller parallel to the wind direction (single vane design implies vane to be directly behind the

propeller, where turbulence occurs).

Figure 3 Propeller

To ensure free rotation of the anemometer, the structure had to be light. It was constructed out
of inexpensive, readily available materials. After cost assessment, it was decided to purchase an
aluminum propeller rather than manufacture one. The horizontal axis connecting the propeller and the
vanes was made out of hollow aluminum rod. A cylindrical wooden rod was used for the vertical axis

that joins the horizontal one and the moving base of the robot itself. This effective lightweight design

was tested under different wind conditions and met all design requirements. Wind was generated by a

variety of fans ranging from small table fan to a large industrial floor fan.

Figure 4 Vanes

Another important mechanical component was the chassis of the robot. It had to be sturdy
enough to carry the previously described wind measuring device and big enough to support the Board of
Education programming board, any additional bread boards, sensors and the two servo motors. Since a
scale model was to be constructed, the team decided to use the high-quality brushed aluminum chassis

from the Boe-Bot® robot kit.

Wind velocity is measured through and IR LED/Photoresistor tachometer. Initially, it was
assumed that no light protection was necessary, but testing showed that tachometer behaves
differently in different light environments. Since the WindBot is assumed to work under many

conditions, the tachometer was placed in an enclosure canister.

Figure 5 Tachometer

Due to final design decision, a sensor was required to calculate anemometer position with
respect to the robot. An RC circuit was used with an LED/Photoresistor pair that measured RCTime
through a thin film with 8 different transparency levels. The sensor was placed in an enclosure canister

to ensure consistent data under all lighting conditions.

Figure 6 Enclosure canister of Wind Direction Sensor

Wheel encoders had to be constructed, so a set of Boe-Bot® kit wheels were used, since each
wheel had 8 holes and was perfect for the task. That ensured a distance measurement equal to one
eighth of a rotation. This design allowed for no slippage, so rubber tires were used to increase friction

with the floor.

Figure 7 Wheel Encoder

Wheel encoders are affected by different light conditions, so an appropriate design solution had
to be considered. Since most of the light comes from above, fenders were chosen as the best solution. It
enables an excellent light protection and easy access to the sensor from the bottom for adjustments and

repairs. Occam’s razor principle was used, and simple, cardboard-made fenders were cut.

Obstacle avoidance would be implemented through the “whisker navigation” that involves two
thin wires protruding from the front of the WindBot. After sufficient deflection, a circuit is closed, and a
Basic Stamp PIN goes from low to high. Although, the mechanical sensor was constructed, this feature

did not make it to the final robot design.

Electronic Circuits:
Wheel Rotation Sensors

In order for the robot to navigate the field and be able to keep track of the distance travelled in
x and y directions, the use of rotary encoders was implemented on the wheels. Utilizing the wheel as an
encoder disk that contains equidistant holes, an LED and photoresistor pair was used. The following

electrical circuit was designed:

Wheel bEncoder

Vld

2e20Q

RRA

Pin

4700
nc

é»

Vss

Figure 8 Electric Circuit

The LED is connected to Vdd through a 220 Ohm resistor, to ensure that the current that passes through
the LED is below the maximum forward current (25mA). Facing the LED is a photoresistor that increases
its conductivity every time the hole in the wheel is in front of it, allowing light to pass through. When the
voltage at the PIN is below 1.4 V, it outputs LOW to the Basic Stamp. By connecting a potentiometer,

the threshold value can be varied for different light conditions. By not connecting the second leg of the

potentiometer, it acts as a variable resistor and not a voltage divider. For safety, a 470 Ohm resistor is

placed to protect the Basic Stamp from being short circuited in case the PIN is set HIGH accidentally.

Object Detection (“Whiskers Navigation”)

The obstacle avoidance program relies on two “Whiskers” to detect whether or not there is an
obstacle in front of the robot. The so called “whisker” acts as a Single Poll Single Throw Switch that
closes and completes the circuit upon impact. The following circuit is used for each of the two

“whiskers”:

L ject Detection
(Whiskers L&R)

Vld

JAN

10K Q

2200

Figure 9 Electric Circuit

The PIN is set as an input pin and is being bulled HIGH by the 10 kOhm pull-up resistor when the
switch is open. As soon as the switch closes, the pin is pulled LOW by Vss. For safety, a 220 Ohm resistor
is placed to protect the Basic Stamp from being short circuited in case the PIN is set HIGH accidentally

and the switch is closed.

Propeller Velocity (RPM)

For an accurate recording of the wind velocity a tachometer was constructed using an infrared
emitter and receiver pair. The receiver is a transistor that acts as a photonic detector which reacts to the

infrared radiation. The following circuit was constructed to perform the necessary operation.

“ropeller
lachometer

Vdd

A\ .

0 T

Vss VES

PRA

Figure 10 Electric Circuit

The IR emitter was positioned in front of the detector, with a divider placed between them. A

220 Ohm resistor was put in front of the infrared LED to ensure that the current does not burn it. The IR

detector has a built-in optical filter that allows very little light other than the 980 nm infrared that is
being emitted. It also has an electric filter that only allows signal around 38.5 kHz to pass through. Every
time the hole in the tachometer wheel is lined up with the detector and emitter, the detector outputs a
HIGH to the PIN. Once again, for safety, a 220 Ohm resistor is placed to protect the Basic Stamp so that

the current sunk into it is below the allowed 25 mA.

Wind Direction (RCTime)

For the robot to be an effective anemometer, it is also necessary to know the direction of the
wind as well as its velocity. Therefore, an LED and photoresistor pair is utilized through the RCTime to

determine direction. The following circuit was used:

wWind DirectTion

Vld
0.1 %
e, 220 <
& o
£] :
470Q
7
B Vss
Vss

Figure 11 Electric Circuit

RCTime measures the time to charge the 0.1 pF capacitor through the resistor. In this case a
photoresistor is used to vary the RCTime which depends on the transparency of the material between
the LED and the Photoresistor. The higher the resistance, the longer the RCTime. The 470 Ohm resistor

is used to protect the PIN in case it is accidentally made HIGH and shorted with ground.

Servo Motors’ Control

The circuit for the Servo Motors involves a 555 timer IC microchip. In astable mode the 555
Timer generates a square pulse wave required by the servos to determine their speed. A properly sized
capacitor and two resistor values were calculated to set the appropriate duty cycle. The following

diagram represents the connections between the Servos, the 555 timer and the Basic Stamp:

Servo Connections

Pin
g 4

7 955
2 Timer H

6
1] —
Ves
1 F Veld
T o
Vss

Figure 12 Electric Circuit

1.4KQ

LKQ

The time between two pulses from the 555 Timer is called t,,, and the duration of each pulse is thign.

Ve L
Vec=6V

23V =4V [~ 7 ------ - o
13Vee= 2V -

‘low] "high ’

Vee-1.5V .
- _’ U ,,
0.IVE v

r

Figure 13 Pulse from 555 Timer

The thign required by the servo motor to rotate forward is 1.7 ms and the time between pulses is 1ms.
Next, the resistance values were determined in order for this pulse to be outputted. The following

formulae were used in the calculation:

E:g“' L fgﬁgaﬁ L E: i c-

Ehign ™ (0.683) = C = (Ry+Ry)

A 1 pF capacitor was used, combined with 1 ms for tl,, and 1.7 ms for t,gn and the following results were

obtained:

Lo .
Hym 8981+ C w 1 5Qkm

Fhigh

- — R & 1.4 kO
Ry 06981 - C R; w14 kQhm

The 555 Timer is controlled by a pin and the servo motors can be controlled either by the 555
Timer or by a Pin. Normally in the design, the Servos receive a pulse from the 555 Timer; however, if it is
required, the 555 Timer can be switched off and the Servos can be controlled by the PULSOUT command

from a pin of the Basic Stamp. The two diodes are used to ensure that the circuit does not short.

Bill of Materials:

e Boe-Bot Robot $159.95
O Chassis (1)
0 Wheels (2)
0 Servos (2)
O Board of Education programming board (1)
0 BASIC Stamp® 2(1)

0 /O Components:

LEDs (3)

= Photoresistors (3)

= Resistors (14)

= Potentiometer (2)

= Capacitors (4)

® Infrared LEDs (1)

= Receivers (1)

= Whisker contact switches (2)

e 555TimerlIC (2) $2.95

e Power Supply: (4 AA’s)

e Breadboard (1)

e LCD Terminal

e Hitachi HM55B Compass Module (1)

e Balsa Wood (1/8” x 6” x 36”) (1)

e Tube Fitting (1)

e Aluminum Rod (1/16” x 12” x %4”) (1)

e Stainless Steel Propeller (1)

e Miscellaneous

(0]

(0]

Solder

Glue

Electrical Tape
Double Sided Tape
Wires

Film Canisters (2)
Transparency (1)
Wooden Shaft

Button (1)

Total: $ 253.99

$2.99
$7.99
$29.95
$29.95
$3.95
$2.95
$2.36
$10.95

$12.00

Prototype Cost:

In order to produce a functional WindBot prototype, an appropriate chassis has to be produced
that will encase the meteorological equipment. Most of the cost will lie in the hull, as the sensors are
relatively cheap. Increased computing power will allow for obstacle avoidance and multiple data point
storage, with math software powering the analysis. A mounted video camera will allow a human

operator to interfere in case of emergency and take over the controls.

The estimated cost of R&D, personnel, testing and materials is:

$ 5,000,000

Cost Analysis for Mass production:

The material and assembly cost is significantly lower than the prototype cost, and is estimated
to be:

$ 50,000

Analysis:

The project design had four major components: mechanical, electrical, programming, and
testing. Mechanical and electrical parts were done simultaneously, and once the robot was complete,

the programming phase began.

A major drawback was developed, once the BASIC STAMP program had to do many things at the
same time. A design change was suggested to change motor function from the PULSOUT command to

the 555 timer, thus enabling an easier programming approach.

Ideally, the PULSOUT command sends a high pulse to the pin, followed by a PAUSE command
that sends a low pulse. As the program gets more complicated and more code is introduced between

PULSOUT commands, the motors begin to behave erratically because of the low pulse time change.

With the 555 timer, to turn the motor on, the PIN is set to high. When it has to stop, the PIN is
set low. The disadvantages include a constant speed and inability to go backwards. Constant speed was
not the issue, since the distance was measured based on the wheel rotation. To go backwards, it was
decided to use an additional pin and PULSOUT command. Robot would go backwards only in the case of

obstacle avoidance, which is assumed to happen rarely.

A certain variety of position sensing was considered. The most efficient solutions were a use of
accelerometer, compass, or wheel encoders. Initially, accelerometer was picked as the best option, but
extensive testing showed that it is accurate enough only in tilt measurements. Since most of the time
robot moves at a constant speed, accelerometer would be ineffective. In order to calibrate

accelerometer to the slight slope change of the floor, too much memory would be used.

Second solution was to use the wheel encoders, since they were already in the design for the
distance measurement. After one of the wheels does a certain distance, the other would be checked,
and any difference would be compensated by turning the robot. This method proved to be acceptable In
following a straight line, but was difficult to implement when the WindBot had to turn 90 or 180
degrees. The encoder had a measurement error equal to the distance between two holes on the wheel,

and the error propagated as the robot went further.

Final design solution used the digital compass to navigate through the field. It was as good as
the encoders while going straight and excellent at turning. Due to the fact that real time data was
gathered, the error was always the same, and within acceptable range. This would also prove very useful

in obstacle avoidance, as the robot will always know its heading. The disadvantage was discovered

during testing, when it became clear that large metal objects such as steel tables offset the compass

calibration, and throw the robot off course.

The main reason for deviation off course lies in the servomotors. They spin at the different
rates, and require potentiometer tuning to reduce the error. By adding 555 timers, error was increased
because resistor values were picked from readily available resistors, and were close to the desired
values, but not exact. In order to solve this problem, a program was written, that measures the wheel
rotation and displays the distance traveled by each wheel. By increasing time between the
measurements, error is allowed to propagate to see better, which wheel is slower. Then it is manually
corrected by twisting the potentiometer, until the distance values are close enough.

(speed_alignment.bs2)

In order to measure wind speed in meters per second, a relationship had to be established
between RPMs and m/s. To do this, a wind of known speed had to spin the blade. Using a fan provided
too much error, as the air moved unevenly around the robot. A solution was developed, by placing
anemometer on the RC Car. By driving it through a known distance and measuring time and average
RPM, a plot was graphed that gave the conversion factor of 0.0022 from RPM to m/s. The y-intercept of

1.3 m/s gives the fan sensitivity threshold. (RC_car_test.bs2 and Retrieve_RC_car_test_data.bs2)

Calibration for Wind Velocity

y=0.0022x + 1.31;6

- S
o NN RO oW

<*

elocity (m/s)

v
o

SENNEY
= N

200 250 300 350 400 450 500 550 600 650
Tachometer Value (RPM)

Figure 14 Plot for Calibration for Wind Velocity

In order to adjust the sensitivity of the encoders, a program was used that lets the user adjust
the potentiometer, until he sees a steady data flow in every lighting environment.

(wheel_encoder_adjustment.bs2)

Programming approach of the project was based on reusability and versatility. Since many of the
robots functions were similar, subroutines were used to save valuable memory space, and allow for
simper building blocks to be used while designing the robot path and action sequence. Versatility comes
from the fact that program is structured to create the grid path with respect to any compass reading,

and to change the grid size using one variable only.

In the beginning of the program, robot aligns the wheels equally, so the relative wheel to sensor
position would be the same for both wheels. This reduces the error and creates a “cleaner” moving

path. Then time is given to align the robot with the +y axis. Robot takes the compass reading, and uses it

as the bearing throughout the program. When robot turns 90 degrees left, it turns with respect to that
bearing. This way the program is the same, whether you align it North or West, or any other way. As it
measures the wind direction, it takes robot’s direction into account, and calculates the wind direction

with respect to earth’s magnetic field.

The robot can follow a square grid with a side of any odd number. By using nested loops, a
single variable controls the grid size. By using created subroutines, any shape and pattern can be easily

created. The class demonstration uses a simplified pattern that was created in no time in PBASIC.

At this point, several more features had to be executed. Data had to be stored in the EEPROM
and obstacle avoidance had to be implemented. Due to a lack of RAM memory, only two data points

could be saved, with no obstacle avoidance.

The reason for a full RAM memory comes from the fact that a lot of Word variables had to be
created for degree calculations. Digital compass used several variables to come up with an angle, and
then it had to be compared with the robot bearing. Because of singularity point at North (360 degrees
becomes 0 degrees), a more complicated code had to be produced. This is discussed in the

Mathematical Background in greater detail.

In order to store the highest wind measurements, they would have to be compared with the old
ones. Since RAM was full, some of the variables were reused. This is made program more confusing, and

should be avoided whenever possible.

To retrieve the data, a second program is used, that reads EEPROM and displays the

measurements on the debug screen.

The programs used are: “the_main_program.bs2” and “retrieve_wind_data.bs2”.

The programs used for the class demonstration are: “class_demonstration.bs2” and

“retrieve_wind_data.bs2”.

Throughout the project design and testing, a few valuable conclusions were made. Each sensor
had to be tested many times under many conditions, because debugging the code required accurate
data readings. All errors had to be accounted for and minimized whenever possible. A programming
code that is aimed for a perfect robot would never work, as the robot would deviate from its course,
require time to start receiving good date, or do something unpredictable due to environmental effects.

Extensive testing had to be done to work everything out.

Appendix A:

Figure 15 Encoder for Wind Direction

Figure 16 Encoder for Rotational Velocity

Appendix B:
Programs:

The_main_program.bs2:

" {$STAMP BS2}

" {$PBASIC 2.5}

" this program lets the robot go in a grid pattern, gather data, and store
the two best locations on EEPROM

" some variables are reused to save RAM space

DinDout PIN 8 " P2 transceives to/from Din/Dout

Clk PIN 6 " PO sends pulses to HM55B"s Clk

En PIN 7 * P2 controls HM55B"s /EN(ABLE)

T [Constants J-----——————— -

Reset CON %0000 " Reset command for HM55B
Measure CON %1000 " Start measurement command

Report CON %1100 " Get status/axis values command

Ready CON %1100 * 11 -> Done, 00 -> no errors

NegMask CON %1111100000000000 " For 11-bit negative to 16-bits

B [variables ---------------\»-»» oot \ p o i b i i i i i i i i i

X VAR Word " x-axis data

y VAR Word " y-axis data

status VAR Nib * Status flags

angle VAR Word " Store angle measurement
bearing VAR Word "Store angle direction

angle_one VAR Word "course correction var and measure speed
angle_two VAR Word "course correction var and EEPROM interaction
direction VAR Word " course correction var and EEPROM interaction
signal VAR Bit "fan blade encoder var

prev_signal VAR Bit "fan blade encoder var

right VAR Bit "right wheel encoder

left VAR Bit "left wheel encoder

right_wheel PIN 9 "powers right 555 timer

left_wheel PIN 10 "powers left 555 timer

counter VAR Nib "alignment for loop counter and wind direction
measurememnt

counter_right VAR Nib “"right wheel travel distance
counter_left VAR Nib "left wheel travel distance

prev_RPM VAR Word *Wind measurememnt var
raw_revolutions VAR Word "wind measurement var
angle_true VAR Word "wind measurememnt

time VAR Word " wind direction var

xloop VAR Nib "square pattern var

yloop VAR Nib "square pattern var

grid_size VAR Nib

grid_size = 4 " actual grid size is grid_size + 1

counter_right = 0
counter_left = 0
raw_revolutions = 0
prev_signal = 0
prev_RPM = 0O

DIR14 = 0O
DIRZ2 = O

" LCD Initialization

PAUSE 200 * Debounce power supply

SEROUT 13, 84, [22, 12] * Turn on & clear LCD
PAUSE 5 " 5 ms delay for clear cmd

"aligns the wheels for better initial accuracy
HIGH right_wheel
HIGH left wheel

FOR counter = 0 TO 15
right = IN2
left = IN14
PAUSE 20

IF (right = 1 AND IN2
LOW right_wheel
ENDIF

0) THEN

IF (left = 1 AND IN14
LOW left_wheel
ENDIF

NEXT

0) THEN

PAUSE 5000

"sets the +y axis as the one robot is facing initially

"this lets the user to align the grid according to his wishes, not the
magnetic field direction

GOSUB Compass_Read

bearing = angle

"the program is assembled here

GOSUB Initialize Data
GOSUB Square_Pattern

END

e [subroutine: Compass Read]----———————-—————-

"Calculates the angle the robot is facing

Compass_Read:

GOSUB Compass_Get _Axes " Get x, and y values

angle = x ATN -y " Convert x and y to brads

angle = angle */ 361 " Convert brads to degrees

" LCD Display heading in degrees ON top line AND x AND y
"measurements ON the bottom line.

SEROUT 13, 84, [128, " ™, 128, DEC angle]

"151, " ", 151, SDEC X,

160, " ', 160, SDEC vy]

PAUSE 30 " Debug delay for slower PCs

RETURN

Compass_Get _Axes: " Compass module subroutine
HIGH En: LOW En " Send reset command to HM55B
SHIFTOUT DinDout,clk,MSBFIRST, [Reset\4]

HIGH En: LOW En * HM55B start measurement command

SHIFTOUT DinDout,clk,MSBFIRST, [Measure\4]

status = 0 * Clear previous status flags

DO * Status flag checking loop

HIGH En: LOW En * Measurement status command

SHIFTOUT DinDout,clk,MSBFIRST, [Report\4]

SHIFTIN DinDout,clk,MSBPOST, [Status\4] " Get Status

LOOP UNTIL status = Ready " Exit loop when status is ready
SHIFTIN DinDout,clk,MSBPOST, [x\11,y\11] " Get x & y axis values
HIGH En " Disable module

IF (y-BIT10 = 1) THEN yv = y | NegMask " Store 1l1-bits as signed word
IF (x.BIT10 = 1) THEN x = x | NegMask " Repeat for other axis
RETURN

—————— [Subroutine - Correct Course]--———————————— o
"aligns the robot towards the bearing
Correct_Course:
DO
GOSUB Compass_Read
angle_one = ABS (bearing - angle)
angle_two = ABS (360 - angle_one)
IF (angle_one < angle _two) THEN

IF (bearing > angle) THEN

HIGH right_wheel

PAUSE 10

LOW right_wheel

ELSE

HIGH left wheel

PAUSE 10

LOW left_wheel

ENDIF
ELSEIF (angle_one > angle_two) THEN
IF (bearing > angle) THEN
HIGH left wheel

PAUSE 10
LOW left_wheel
ELSE
HIGH right_wheel
PAUSE 10
LOW right_wheel
ENDIF
ENDIF
LOOP UNTIL (angle_one < 5 OR angle_two < 5)
RETURN
e ——— [Subroutine - Go_Straight]-------—— -

"moves the robot forward one wheel rotation

Go_Straight:

counter_right = 0

counter_left = 0

HIGH right_wheel

HIGH left_wheel

DO " one rotation loop

right = IN2

left = IN14
PAUSE 20

IF (right = 1 AND IN2 = 0) THEN
counter_right = counter_right + 1
ENDIF

IF (left = 1 AND IN14 = 0) THEN
counter_left = counter_left + 1
ENDIF

LOOP UNTIL (counter_right > 5 OR counter_left > 5) "rotation stops

LOW right_wheel
LOW left_wheel
RETURN

- [Subroutine: Measure Wind_Speed]---————-——-—-——-———————
"gathers the RPM from the wind speed sensor
Measure_Wind_Speed:

PAUSE 3000
FOR angle one = 0 TO 2000
FREQOUT 15,1, 38500
signal = IN15
" DEBUG ? signal
IF (signal = 1) AND (prev_signal = 0) THEN
IF (raw_revolutions > 10) THEN
DEBUG ? (15000/raw_revolutions)
IF (prev_RPM < 15000/raw_revolutions) THEN
prev_RPM = 15000/raw_revolutions
ENDIF
ENDIF
raw_revolutions = 0
ENDIF
raw_revolutions = raw_revolutions + 1
prev_signal = signal
NEXT
RETURN

e [Subroutine: Square_Pattern]--—-————————————————————
"makes the robot go in the grid

Square_Pattern:

GOSUB Go_Straight

GOSUB Correct_Course

FOR xloop = 0 TO grid_size

IF(xloop // 2) THEN
FOR yloop = grid_size TO O
GOSUB Align_Back
GOSUB Go_Straight
GOSUB Measure_Wind_Speed
GOSUB Wind_Direction
GOSUB Store_Data

NEXT

GOSUB Align_Right

GOSUB Go_Straight

GOSUB Correct_Course
GOSUB Measure_Wind_Speed
GOSUB Wind_Direction
GOSUB Store_Data

ELSE

FOR yloop = 0 TO grid_size
GOSUB Correct_Course

GOSUB Go_Straight

GOSUB Measure_Wind_Speed
GOSUB Wind_Direction

GOSUB Store_Data

NEXT

GOSUB Align_Right
GOSUB Go_Straight
GOSUB Align_Back

ENDIF
NEXT

FOR xloop = grid_size + 2 TO O
GOSUB Align_Left

GOSUB Go_Straight

NEXT

FOR yloop = (grid_size - 1) TO O
GOSUB Align_Back

GOSUB Go_Straight

NEXT

RETURN

e [Subroutine: Align_Right]---———————-——
"turns the robot bearing + 90
Align_Right:
DO
GOSUB Compass_Read
IF (bearing > 269) THEN
direction = bearing - 270

ELSE
direction = bearing + 90
ENDIF
angle _one = ABS (direction - angle)
angle_two = ABS (360 - angle_one)

IF (angle_one < angle_two) THEN
IF (direction > angle) THEN
HIGH right_wheel
PAUSE 10
LOW right_wheel
ELSE
HIGH left_wheel
PAUSE 10
LOW left_wheel
ENDIF

ELSEIF (angle_one > angle_two) THEN
IF (direction > angle) THEN
HIGH left wheel

PAUSE 10
LOW left_wheel
ELSE
HIGH right_wheel
PAUSE 10
LOW right_wheel
ENDIF
ENDIF
LOOP UNTIL (angle_one < 5 OR angle_two < 5)
RETURN
e [Subroutine: Align_Left |---————-——-—--——————
"turns the robot bearing - 90
Align_Left:
DO

GOSUB Compass_Read
IF (bearing < 91) THEN
direction = bearing + 270

ELSE
direction = bearing - 90
ENDIF
angle one = ABS (direction - angle)
angle_two = ABS (360 - angle_one)

IF (angle_one < angle_two) THEN
IF (direction > angle) THEN
HIGH right_wheel
PAUSE 10
LOW right_wheel
ELSE
HIGH left wheel
PAUSE 10
LOW left_wheel
ENDIF

ELSEIF (angle_one > angle_two) THEN
IF (direction > angle) THEN
HIGH left_wheel

PAUSE 10
LOW left_wheel
ELSE
HIGH right_wheel
PAUSE 10
LOW right_wheel
ENDIF
ENDIF
LOOP UNTIL (angle_one < 5 OR angle_two < 5)
RETURN
- [Subroutine: Align_Back]------————-----"-------———-
"turns the robot bearing + 180
Align_Back:
DO

GOSUB Compass_Read

N

IF (bearing 180) THEN

direction = bearing + 180
ELSE

direction
ENDIF
angle _one = ABS (direction - angle)
angle_two = ABS (360 - angle_one)
IF (angle_one < angle_two) THEN

IF (direction > angle) THEN

HIGH right_wheel

PAUSE 10

LOW right_wheel

ELSE

HIGH left wheel

PAUSE 10

LOW left_wheel

ENDIF
ELSEIF (angle_one > angle_two) THEN

IF (direction > angle) THEN

HIGH left_wheel

PAUSE 10

LOW left_wheel

ELSE

HIGH right_wheel

PAUSE 10

LOW right_wheel

ENDIF
ENDIF

bearing - 180

LOOP UNTIL (angle_one < 5 OR angle_two < 5)
RETURN

------------- [Subroutine: Wind_Direction]--—————————————-
"measures the aerovane direction with respect to earths magnetic field
Wind_Direction:
*DO
GOSUB Compass_Read
PAUSE 1000
HIGH O
PAUSE 100
RCTIME O, 1, time
DEBUG ? time
IF (time >= 0 AND time < 340) THEN
DEBUG "'1", CR
counter = 0O
ELSEIF (time >= 340 AND time < 395) THEN
DEBUG 2", CR
counter =1
ELSEIF (time >= 395 AND time < 430) THEN
DEBUG *'3', CR
counter = 2
ELSEIF (time >= 430 AND time < 480) THEN
DEBUG "'4"™, CR
counter = 3
ELSEIF (time >= 480 AND time < 530) THEN
DEBUG *'5', CR
counter = 4

ELSEIF (time >= 530 AND time < 600) THEN
DEBUG "6, CR
counter = 5
ELSEIF (time >= 600 AND time < 675) THEN
DEBUG "7, CR
counter = 6
ELSE
DEBUG "'8", CR
counter = 7
ENDIF
DEBUG ? time
DEBUG ? angle
DEBUG ? counter

IF (angle + (counter * 45)) < 360 THEN

angle_true (angle + (counter * 45))

ELSE

angle_true = (angle + (counter * 45) - 360)

ENDIF

SEROUT 13, 84, [148, " ', 148, DEC angle_true, " ']
PAUSE 1000

"LOOP

RETURN

B e e e L e [Subroutine: Store Data]---------————-----—-

"overwrites the data if its better than what is already stored
Store_Data:

READ 0, Word angle_one

READ 6, Word angle_two

IF (angle_one < angle_two) AND (prev_RPM > angle_one) THEN
WRITE O, Word prev_RPM, Word angle_true, xloop, yloop

ELSEIF (angle_two < angle_one) AND (prev_RPM > angle_two) THEN
WRITE 6, Word prev_RPM, Word angle_true, xloop, yloop

ENDIF

prev_RPM = 0O

RETURN

B [Subroutine: Initialize Data]-----———------—---———-

"clears EEPROM

Initialize Data:

DATA 0,0,0,0,0,0,0,0,0,0,0,0
RETURN

Class_demonstration.bs2:

* {$STAMP BS2}

* {$PBASIC 2.5}

" this program lets the robot go in a grid pattern, gather data, and store
the two best locations on EEPROM

" some variables are reused to save RAM space

DinDout PIN 8 " P2 transceives to/from Din/Dout

Clk PIN 6 " PO sends pulses to HM55B"s Clk

En PIN 7 * P2 controls HM55B"s /EN(ABLE)

B [Constants |---———-———— - - —— -

Reset CON %0000 * Reset command for HM55B

Measure CON %1000 " Start measurement command

Report CON %1100 " Get status/axis values command

Ready CON %1100 * 11 -> Done, 00 -> no errors

NegMask CON %1111100000000000 " For 11-bit negative to 16-bits

B [variables }------—-—-—--1-+--—1—- e 0 : i i i i i i i i i i i i

X VAR Word * x-axis data

y VAR Word " y-axis data

status VAR Nib " Status flags

angle VAR Word " Store angle measurement
bearing VAR Word "Store angle direction

angle_one VAR Word "course correction var and measure speed
angle_two VAR Word "course correction var and EEPROM interaction
direction VAR Word " course correction var and EEPROM interaction
signal VAR Bit "fan blade encoder var

prev_signal VAR Bit "fan blade encoder var

right VAR Bit "right wheel encoder

left VAR Bit "left wheel encoder

right _wheel PIN 9 "powers right 555 timer

left_wheel PIN 10 "powers left 555 timer

counter VAR Nib "alignment for loop counter and wind direction
measurememnt

counter_right VAR Nib “right wheel travel distance
counter_left VAR Nib "left wheel travel distance

prev_RPM VAR Word "Wind measurememnt var
raw_revolutions VAR Word "wind measurement var
angle_true VAR Word "wind measurememnt

time VAR Word " wind direction var

xloop VAR Nib "square pattern var

yloop VAR Nib "square pattern var

grid_size VAR Nib

grid_size = 4 " actual grid size is grid_size + 1

counter_right = 0
counter_left = 0
raw_revolutions = 0
prev_signal = 0

prev_RPM = 0

DIR14 = O

DIR2 = 0O

B [Initialization]--————--—--—---"-"-"-"-"-""""--

" LCD Initialization

PAUSE 200 * Debounce power supply

SEROUT 13, 84, [22, 12] " Turn on & clear LCD
PAUSE 5 " 5 ms delay for clear cmd

"aligns the wheels for better initial accuracy
HIGH right_wheel
HIGH left_wheel

FOR counter = 0 TO 15
right = IN2
left = IN14
PAUSE 20

IF (right = 1 AND IN2
LOW right_wheel
ENDIF

0) THEN

IF (left = 1 AND IN14
LOW left_wheel
ENDIF

NEXT

0) THEN

PAUSE 5000

- ******************SET BEAR I NG********************

"sets the +y axis as the one robot is facing initially

"this lets the user to align the grid according to his wishes, not the
magnetic field direction

GOSUB Compass_Read

bearing = angle

"the program is assembled here

GOSUB Initialize Data

GOSuB
GOSUB
GOSUB
GOSUB
GOSuUB
GOSuB
xloop
yloop
GOSUB
GOSuUB
GOSuB

GOSUB
GOSUB
GOSuUB
GOSuUB
GOSUB
GOSUB
GOSUB
xloop
yloop
GOSUB
GOSUB
GOSUB

GOSUB
GOSuUB
GOSuUB
GOSuUB
GOSUB
GOSUB
GOSuUB

xloop
yloop
GOSuB
GOSUB
GOSUB

GOSUB
GOSUB
GOSuUB
GOSuUB
GOSuUB
GOSUB

xloop
yloop
GOSuUB
GOSuUB
GOSuB

GOSUB
GOSUB
GOSUB
GOSUB
GOSuUB

Go_Straight
Correct_Course
Go_Straight
Correct_Course
Go_Straight
Correct_Course
=0

=0
Measure_Wind_Speed
Wind_Direction
Store_Data

Initialize Data
Go_Straight
Correct_Course
Go_Straight
Correct_Course
Go_Straight
Correct_Course
=0

=1
Measure_Wind_Speed
Wind_Direction
Store_Data

Align_Right
Go_Straight
Align_Right
Go_Straight
Align_Right
Go_Straight
Align_Back

1

1
Measure_Wind_Speed
Wind_Direction
Store_Data

Go_Straight
Align_Back
Go_Straight
Align_Back
Go_Straight
Align_Back

=1

=0
Measure_Wind_Speed
Wind_Direction
Store_Data

Go_Straight
Align_Back
Go_Straight
Align_Back
Go_Straight

GOSUB Align_Back

GOSUB Align_Left
GOSUB Go_Straight
GOSUB Align_Left
GOSUB Go_Straight
GOSUB Align_Left
GOSUB Go_Straight

--------------- [subroutine: Compass Read]----———————-—————-
"Calculates the angle the robot is facing

Compass_Read:

GOSUB Compass_Get _Axes " Get x, and y values

angle = x ATN -y " Convert x and y to brads

angle = angle */ 361 " Convert brads to degrees

" LCD Display heading in degrees ON top line AND x AND y
"measurements ON the bottom line.

SEROUT 13, 84, [128, " ™, 128, DEC angle]

*151, " ", 151, SDEC X,

160, "™ ', 160, SDEC vy]

PAUSE 30 " Debug delay for slower PCs

RETURN

Compass_Get_Axes: " Compass module subroutine

HIGH En: LOW En * Send reset command to HM55B

SHIFTOUT DinDout,clk,MSBFIRST, [Reset\4]

HIGH En: LOW En " HM55B start measurement command

SHIFTOUT DinDout,clk,MSBFIRST, [Measure\4]

status = 0 * Clear previous status flags

DO * Status flag checking loop

HIGH En: LOW En " Measurement status command

SHIFTOUT DinDout,clk,MSBFIRST, [Report\4]

SHIFTIN DinDout,clk,MSBPOST, [Status\4] " Get Status

LOOP UNTIL status = Ready " Exit loop when status is ready
SHIFTIN DinDout,clk,MSBPOST, [x\11,y\11] " Get x & y axis values
HIGH En " Disable module
IF (y-BIT10 = 1) THEN y =
IF (x.BIT10 = 1) THEN x =
RETURN

y | NegMask * Store 1ll-bits as signed word
X | NegMask * Repeat for other axis

—————— [Subroutine - Correct Course]--—-——————————— e
"aligns the robot towards the bearing
Correct_Course:

DO

GOSUB Compass_Read

angle _one = ABS (bearing - angle)
angle_two = ABS (360 - angle_one)

IF (angle_one < angle_two) THEN

IF (bearing > angle) THEN

HIGH right_wheel

PAUSE 10

LOW right_wheel

ELSE
HIGH left_wheel
PAUSE 10
LOW left_wheel
ENDIF
ELSEIF (angle_one > angle_two) THEN
IF (bearing > angle) THEN
HIGH left wheel
PAUSE 10
LOW left_wheel
ELSE
HIGH right_wheel
PAUSE 10
LOW right_wheel
ENDIF
ENDIF

LOOP UNTIL (angle_one < 5 OR angle_two < 5)
RETURN

o ——— [Subroutine - Go_Straight]-------————---————-

"moves the robot forward one wheel rotation
Go_Straight:

counter_right = 0

counter_left = 0

HIGH right_wheel

HIGH left wheel

DO " one rotation loop
right = IN2
left = IN14
PAUSE 20

IF (right = 1 AND IN2 = 0) THEN
counter_right = counter_right + 1
ENDIF

IF (left = 1 AND IN14 = 0) THEN
counter_left = counter_left + 1
ENDIF

LOOP UNTIL (counter_right > 5 OR counter_left > 5)
LOW right_wheel

LOW left_wheel
RETURN

e [Subroutine: Measure_Wind_Speed]---—------—-

"gathers the RPM from the wind speed sensor
Measure_Wind_Speed:

PAUSE 3000

FOR angle one = 0 TO 2000
FREQOUT 15,1, 38500
signal = IN15

"rotation stops

" DEBUG ? signal
IF (signal = 1) AND (prev_signal = 0) THEN
IF (raw_revolutions > 10) THEN
DEBUG ? (15000/raw_revolutions)
IF (prev_RPM < 15000/raw_revolutions) THEN
prev_RPM = 15000/raw_revolutions
ENDIF
ENDIF
raw_revolutions = 0
ENDIF
raw_revolutions = raw_revolutions + 1
prev_signal = signal
NEXT
RETURN

———————— [Subroutine: Square_Pattern]----———————————————————
"makes the robot go in the grid

Square_Pattern:

GOSUB Go_Straight

GOSUB Correct_Course

FOR xloop = 0 TO grid_size

IF(xloop // 2) THEN
FOR yloop = grid_size TO O
GOSUB Align_Back
GOSUB Go_Straight
GOSUB Measure_Wind_Speed
GOSUB Wind_Direction
GOSUB Store_Data

NEXT

GOSUB Align_Right

GOSUB Go_Straight

GOSUB Correct_Course
GOSUB Measure_Wind_Speed
GOSUB Wind_Direction
GOSUB Store_Data

ELSE

FOR yloop = 0 TO grid_size
GOSUB Correct_Course

GOSUB Go_Straight

GOSUB Measure_Wind_Speed
GOSUB Wind_Direction

GOSUB Store_Data

NEXT

GOSUB Align_Right
GOSUB Go_Straight
GOSUB Align_Back

ENDIF
NEXT

FOR xloop = grid_size + 2 TO O
GOSUB Align_Left

GOSUB Go_Straight

NEXT

FOR yloop = (grid_size - 1) TO O
GOSUB Align_Back

GOSUB Go_Straight

NEXT

RETURN

e [Subroutine: Align_Right]---— -~
"turns the robot bearing + 90
Align_Right:
DO
GOSUB Compass_Read
IF (bearing > 269) THEN
direction = bearing - 270

ELSE
direction = bearing + 90
ENDIF
angle_one = ABS (direction - angle)

angle_two = ABS (360 - angle_one)
IF (angle_one < angle _two) THEN
IF (direction > angle) THEN
HIGH right_wheel
PAUSE 10
LOW right_wheel
ELSE
HIGH left wheel
PAUSE 10
LOW left_wheel
ENDIF
ELSEIF (angle_one > angle_two) THEN
IF (direction > angle) THEN
HIGH left wheel

PAUSE 10
LOW left_wheel
ELSE
HIGH right_wheel
PAUSE 10
LOW right_wheel
ENDIF
ENDIF
LOOP UNTIL (angle_one < 5 OR angle_two < 5)
RETURN
e [Subroutine: Align_ Left |-
"turns the robot bearing - 90
Align_Left:
DO

GOSUB Compass_Read
IF (bearing < 91) THEN
direction = bearing + 270
ELSE
direction = bearing - 90
ENDIF
angle one = ABS (direction - angle)

angle_two = ABS (360 - angle_one)
IF (angle_one < angle _two) THEN
IF (direction > angle) THEN
HIGH right_wheel
PAUSE 10
LOW right_wheel
ELSE
HIGH left wheel
PAUSE 10
LOW left_wheel
ENDIF
ELSEIF (angle_one > angle_two) THEN
IF (direction > angle) THEN
HIGH left wheel

PAUSE 10
LOW left_wheel
ELSE
HIGH right_wheel
PAUSE 10
LOW right_wheel
ENDIF
ENDIF
LOOP UNTIL (angle_one < 5 OR angle_two < 5)
RETURN
e [Subroutine: Align Back]---————---—-———————— -~
"turns the robot bearing + 180
Align_Back:
DO

GOSUB Compass_Read
IF (bearing < 180) THEN
direction = bearing + 180

ELSE
direction = bearing - 180
ENDIF
angle one = ABS (direction - angle)
angle_two = ABS (360 - angle_one)

IF (angle_one < angle_two) THEN
IF (direction > angle) THEN
HIGH right_wheel
PAUSE 10
LOW right_wheel
ELSE
HIGH left_wheel
PAUSE 10
LOW left_wheel
ENDIF

ELSEIF (angle_one > angle_two) THEN
IF (direction > angle) THEN
HIGH left_wheel
PAUSE 10
LOW left_wheel
ELSE
HIGH right_wheel
PAUSE 10
LOW right_wheel

ENDIF
ENDIF

LOOP UNTIL (angle_one < 5 OR angle_two < 5)
RETURN

————————————— [Subroutine: Wind Direction J--—————————————-
"measures the aerovane direction with respect to earths magnetic field
Wind_Direction:
"DO
GOSUB Compass_Read
PAUSE 1000
HIGH O
PAUSE 100
RCTIME 0, 1, time
DEBUG ? time
IF (time >= 0 AND time < 340) THEN
DEBUG *"1', CR
counter = 0O
ELSEIF (time >= 340 AND time < 395) THEN
DEBUG *"2'", CR
counter =1
ELSEIF (time >= 395 AND time < 430) THEN
DEBUG *3', CR
counter = 2
ELSEIF (time >= 430 AND time < 480) THEN
DEBUG *"4', CR
counter = 3
ELSEIF (time >= 480 AND time < 530) THEN
DEBUG "'5', CR
counter = 4
ELSEIF (time >= 530 AND time < 600) THEN
DEBUG *"6'", CR
counter = 5
ELSEIF (time >= 600 AND time < 675) THEN
DEBUG 7', CR
counter = 6
ELSE
DEBUG "8, CR
counter =7
ENDIF
DEBUG ? time
DEBUG ? angle
DEBUG ? counter

IF (angle + (counter * 45)) < 360 THEN
angle_true = (angle + (counter * 45))
ELSE
angle_true
ENDIF
SEROUT 13, 84, [148, "™ ', 148, DEC angle_true, " ']
PAUSE 1000

*LOOP

RETURN

(angle + (counter * 45) - 360)

B e e e L et [Subroutine: Store Data]---—------—————---—-
"overwrites the data if its better than what is already stored

Store_Data:
READ 0, Word angle_one
READ 6, Word angle_two

IF (angle_one < angle_two) AND (prev_RPM > angle_one) THEN
WRITE 0, Word prev_RPM, Word angle_ true, xloop, yloop

ELSEIF (angle_two < angle_one) AND (prev_RPM > angle_two) THEN
WRITE 6, Word prev_RPM, Word angle_true, xloop, yloop

ENDIF

prev_RPM = 0

RETURN

B e T e e [Subroutine: Initialize Data]----~——————--——-———-————-

"clears EEPROM

Initialize Data:

DATA 0,0,0,0,0,0,0,0,0,0,0,0
RETURN

Retrieve_wind_data.bs2:

" {$STAMP BS2}
* {$PBASIC 2.5}

"this

program retrieves the field data and displays the values

rpm_1 VAR Word
rpm_2 VAR Word

direction_1 VAR Word
direction_2 VAR Word

x_1 VAR Nib
x_2 VAR Nib

y_1 VAR Nib
y_2 VAR Nib

READ O ,Word rpm_1, Word direction_1, x 1, y 1, Word rpm 2, Word direction_2,
X2,y 2

PAUSE
DEBUG

145

** 145

END

500
"DATA POINT ONE:",CR,
""COORD INATES: (', DEC y 1, ",", DEC x_1, ")",CR,
"WIND VELOCITY: ",DEC rpm_1 ** 145, "_" DEC ((rpm_1 // 455) * 100) **
’ CR ’
"WIND DIRECTION: ", DEC direction_1, CR,CR,
"DATA POINT TWO:",CR,CR,
""COORD INATES: (', DEC y 2, ",", DEC x_2, ")",CR,
"WIND VELOCITY: ', DEC rpm_2 ** 145, "_* DEC ((rpm_2 // 455) * 100)
’ CR ’
"WIND DIRECTION: ', DEC direction 2, CR

Rc_car_test.bs2:

* {$STAMP BS2}

* {$PBASIC 2.5}

" this program measures the wind speed while on the RC car, and records the
highest value

signal VAR Bit
prev_signal VAR Bit
counter VAR Word
prev_counter VAR Word

counter = O
prev_signal = 0
prev_counter = 0

PAUSE 5000
HIGH 2

DO
FREQOUT 15,1, 38500
signal = IN15
" DEBUG ? signal
IF (signal = 1) AND (prev_signal = 0) THEN

IF (counter > 10) THEN "counter increases
while signal is not changing
DEBUG ? (15000/counter) "once signal changes,

RPM is calculated and counter is reset
IF (prev_counter < 15000/counter) THEN

prev_counter = 15000/counter " 15000 is the
conversion factor for the RPM
ENDIF

DEBUG ? prev_counter
WRITE 0, Word prev_counter
ENDIF
counter = O
ENDIF
counter = counter + 1
prev_signal = signal
LOOP

Retrieve_rc_car_test_data.bs2:

" {$STAMP BS2}
* {$PBASIC 2.5}

“this small program reads the data from locations O and 1
"and uses it to find the highest RPM during the RC car test

value VAR Word
READ 0, Word value

DEBUG ? value

END

Wheel_encoder_adjustment.bs2:

" {$STAMP BS2}

" {$PBASIC 2.5}

"this program lets the user adjust the potentiometer to appropriate lighting
conditions

DIR14 = O

DIR2 = O

value VAR Bit
counter_right VAR Word
counter_right = 0

HIGH 9

HIGH 10

DO
value = IN2

" DEBUG ? value

* DEBUG ? IN2

PAUSE 14
IF (value = 1 AND IN2 = 0) THEN
counter_right = counter_right + 1
ENDIF

LOOP UNTIL (counter_right > 7)
DEBUG ? counter_right

LOW 9

LOW 10

Speed_alignment.bs2:

" {$STAMP BS2}

" {$PBASIC 2.5}

" this program lets the user to adjust the potentiometers on the servos to
amke wheels rotate at the same speed

" the wheel encoders show the rotations of both wheels, and as the values
approach each other, the motors spin at

" closer speeds

right VAR Bit "stores the previous measurement
left VAR Bit “"stores the previous measurement

counter VAR Nib

counter_right VAR Word “keeps the amount of revolutions
counter_left VAR Word "keeps the amount of revolutions

counter_right = 0
counter_left = 0

DIR14 = O
DIRZ2 = O

HIGH 9
HIGH 10

FOR counter = 0 TO 15
right = IN2
left = IN14
PAUSE 20

IF (right = 1 AND IN2
LOW 9
ENDIF

0) THEN

IF (left = 1 AND IN14
LOW 10
ENDIF

NEXT

0) THEN

PAUSE 1000

HIGH 9

HIGH 10

DO

DO
right = IN2
left = IN14
PAUSE 20

IF (right = 1 AND IN2 = 0) THEN
counter_right = counter_right + 1
ENDIF

IF (left = 1 AND IN14 = 0) THEN
counter_left = counter_left + 1
ENDIF

LOOP UNTIL (counter_right > 20 OR counter_left > 20) "when one of the wheels
do 20/8 rotations, program displays rotation of both wheels

DEBUG CLS

DEBUG ? counter_right

DEBUG ? counter_left

counter_left = 0

counter_right = 0

LOOP

Bibliography:

Lindsay, A. (2003-2004). What’s a Microcontroller?, Parallax, Inc.

Lindsay, A. (2003-2004). Robotics with the Boe-Bot, Parallax, Inc.

Lindsay, A. (2003-2004). Basic Analog and Digital, Parallax, Inc.

Lindsay, A. (2003-2004). Smart Sensors & Applications, Parallax, Inc.

Kapila, V. (2008). Mechatronics Lecture Slides, Polytechnic University

Parallax, Inc. (2007), http://www.parallax.com/

